High-frequency, spin-label EPR of nonaxial lipid ordering and motion in cholesterol-containing membranes.

نویسندگان

  • B J Gaffney
  • D Marsh
چکیده

The EPR spectra of spin-labeled lipid chains in fully hydrated bilayer membranes of dimyristoyl phosphatidylcholine containing 40 mol % of cholesterol have been studied in the liquid-ordered phase at a microwave radiation frequency of 94 GHz. At such high field strengths, the spectra should be optimally sensitive to lateral chain ordering that is expected in the formation of in-plane domains. The high-field EPR spectra from random dispersions of the cholesterol-containing membranes display very little axial averaging of the nitroxide g-tensor anisotropy for lipids spin labeled toward the carboxyl end of the sn-2 chain (down to the 8-C atom). For these positions of labeling, anisotropic 14N-hyperfine splittings are resolved in the gzz and gyy regions of the nonaxial EPR spectra. For positions of labeling further down the lipid chain, toward the terminal methyl group, the axial averaging of the spectral features systematically increases and is complete at the 14-C atom position. Concomitantly, the time-averaged element of the 14N-hyperfine tensor decreases, indicating that the axial rotation at the terminal methyl end of the chains arises from correlated torsional motions about the bonds of the chain backbone, the dynamics of which also give rise to a differential line broadening of the 14N-hyperfine manifolds in the gzz region of the spectrum. These results provide an indication of the way in which lateral ordering of lipid chains in membranes is induced by cholesterol.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation studies of high-field EPR spectra of spin-labeled lipids in membranes.

The high-field (i.e., 94 GHz) membrane EPR spectra of lipids spin labeled in their fatty acid chains have been simulated by using two limiting motional models. The aim was to identify the dynamic origin of the residual (g(xx) - g(yy)) anisotropy observed in the nonaxial EPR spectra of cholesterol-containing membranes. It is concluded that the residual spectral anisotropy arises from in-plane or...

متن کامل

Lateral ordering of lipid chains in cholesterol-containing membranes: high-field spin-label EPR.

High-field (i.e., 94 GHz) electron paramagnetic resonance is used to characterize the nonaxial ordering of spin-labeled lipid chains in membranes containing cholesterol. Employing high magnetic fields (and microwave frequencies) allows investigation of both the lateral and transverse ordering of the phospholipid chains by cholesterol, from the x-y and z-elements, respectively, of the spin-label...

متن کامل

Physical properties of lipid bilayer membranes: relevance to membrane biological functions.

Over the last 25 years one of us (WKS) has been investigating physical properties of lipid bilayer membranes. In 1991 a group led by WKS was organized into the Laboratory of Structure and Dynamics of Biological Membranes, the effective member of which is AW. Using mainly the electron paramagnetic resonance (EPR) spin-labeling method, we obtained unexpected results, which are significant for the...

متن کامل

Anisotropic motion effects in CW non-linear EPR spectra: relaxation enhancement of lipid spin labels.

Continuous-wave (CW) EPR measurements of enhancements in spin-lattice (T(1)-) relaxation rate find wide application for determining spin-label locations in biological systems. Often, especially in membranes, the spin-label rotational motion is anisotropic and subject to an orientational potential. We investigate here the effects of anisotropic diffusion and ordering on non-linear CW-EPR methods...

متن کامل

Librational motion of spin-labeled lipids in high-cholesterol containing membranes from echo-detected EPR spectra.

Two-pulse, echo-detected (ED) electron paramagnetic resonance (EPR) spectroscopy was used to study the librational motions of spin-labeled lipids in membranes of dipalmitoylphosphatidylcholine + 50 mol % cholesterol. The temperature dependence, over the range 77-240 K, and the dependence on position of spin-labeling in the sn-2 chain (n=5, 7, 10, 12, and 14) of the phospholipid, were characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 22  شماره 

صفحات  -

تاریخ انتشار 1998